

СИНТЕЗ НАНОПОРОШКОВ ФЕРРИТОВ МЕТОДОМ СООСАЖДЕНИЯ С АКТИВИРУЮЩИМ ВОЗДЕЙСТВИЕМ СВЧ-ИЗЛУЧЕНИЯ

Томина Е.В.,^а Миттова И.Я.,^а Миттова В.О.⁶

^аВоронежский государственный университет 394018, Россия, г. Воронеж, Университетская площадь, 1 e-mail: Tomina-e-v@ yandex.ru ^бВоронежский государственный медицинский университет им. Н.Н. Бурденко, 394036, г. Воронеж, ул. Студенческая, 10.

Основным недостатком классической керамической технологии синтеза ферритов является высокая энергоемкость и длительность процесса. Кроме того, при твердофазном синтезе в керамиках ABO₃ часто присутствуют примеси, что связано с дефицитом А-позиций, возникающем при кристаллографическом сдвиге, характерном для кислородно-октаэдрических соединений типа ReO₃, содержащих элементы с переменной валентностью в В-позиции.

Микроволновое излучение стимулирует разложение солевых прекурсоров, дегидратацию и синтез ферритов за счет однородности и высокой скорости микроволнового нагрева и ускорения процессов «зародышеобразования» под влиянием «нетермических» эффектов. Активация синтеза BiFeO₃ и YFeO₃ СВЧ-излучением при использовании в качестве осадителя NaOH значительно увеличивает скорость процесса, снижает температуру отжига и обеспечивает высокую химическую гомогенность образцов (РФА, ИКС) при размере частиц в диапазоне 20 - 60 нм (ПЭМ).

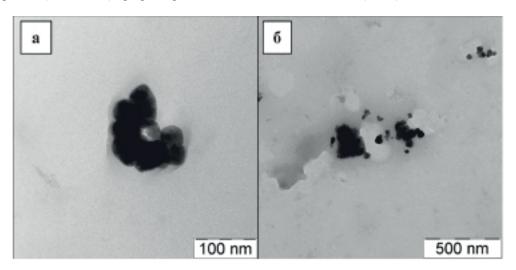


Рисунок 1. ПЭМ изображение образцов BiFeO₃ (а) и YFeO₃ (б) в желатиновом слое.

Работа выполнена при поддержке гранта РФФИ, проект № 18-03-00354а.