

СИНТЕЗ И СВОЙСТВА МЕДЬСОДЕРЖАЩЕЙ КЕРАМИКИ СО СТРУКТУРОЙ ГОЛЛАНДИТА

<u>Третьяченко Е.В.</u>, ^а Саунина С.И., ⁶ Горшков Н.В., ^а Викулова М.А., ^а Нигматуллин В.Р., ^а Гороховский А.В., ^а Ягафаров Ш.Ш., ⁶ Гатина Р.Т. ⁶

^aCapamoвский государственный технический университет имени Гагарина Ю.А., 410054, Саратов, ул. Политехническая, 77, e-mail: trev07@rambler.ru

6 Челябинский государственный университет, 454001, Челябинск, ул. Братьев Кашириных, 129

В последние годы для миниатюризации электронных устройств большое внимание привлекают материалы с высокой диэлектрической проницаемостью. В данных целях чаще всего используются составы, включающие соединения, находящиеся в параэлектрическом состоянии в интервале рабочих температур, а также соединения с преобладающей электронной поляризацией и сильным внутрикристаллическим полем. К таким соединениям относятся различные титанаты со структурой перовскита и голландита.

В рамках данной работы получение медьсодержащего керамического материала осуществлялось по новой растворной технологии, в которой в качестве основы выбран рентгеноаморфный полититанат калия (ПТК). Последующая температурная обработка при 900° С модифицированного ПТК приводит к процессам кристаллизации с образованием структуры голландита состава $K_{1.54}(\text{Cu}_{0.77}\text{Ti}_{7.23})O_{16}$. Оптимальная величина pH в процессе модифицирования, способствующая образованию практически однофазной керамики, составило~8,5.

Исследование электрофизических свойств синтезированной керамики показало на низких частотах величину диэлектрической проницаемости в диапазоне от $\sim 10^4$ до $\sim 10^8$ в зависимости от температуры спекания компактированных образцов. Необходимо отметить, что по мере увеличения температуры спекания частотный диапазон со стабильным значением є возрастает и достигает границ, характерных для керамики состава CaCu $_3$ Ti $_4$ O $_{12}$, имеющей на данный момент наиболее высокое значение диэлектрической проницаемость ($\epsilon_{_{\rm I}} \sim 10^4$), стабильное в широком диапазоне температур (100-400 K) и частоты (10^2 - 10^5 Γ ц).

Таким образом, по диэлектрическим свойствам синтезированный материал не уступает керамике состава ${\rm CaCu_3Ti_4O_{12}}$, однако предлагаемая технологически простая и дешевая методика синтеза позволяет получать материалы с варьируемым составом и свойствами.

Работа выполнена при финансовой поддержке Минобрнауки России, проект 10.1434.2017/4.6.