

АМФИФИЛЬНЫЕ МАКРОМОЛЕКУЛЯРНЫЕ ЩЕТКИ С ПОЛИСИЛОКСАНОВОЙ ОСНОВНОЙ ЦЕПЬЮ ДЛЯ МОДИФИКАЦИИ БЛОК-СОПОЛИМЕРОВ

<u>Файзулина З.З.,</u> ¹ Исхаков А.Ф., ¹ Джаббаров И.М., ¹ Давлетбаев Р.С., ² Зарипов И.И., ² Давлетбаева И.М. ¹

¹Казанский национальный исследовательский технологический университет, 420015, Казань, Карла Маркса 68
e-mail: faizulina.alin@yandex.ru

²Казанский Национальный Исследовательский Технический Университет им. А.Н. Туполева, 420111, Казань, К. Маркса, 10

Синтезированы амфифильные макромолекулярные щетки с полисилоксановой основной цепью и исследовано их влияние на процессы микрофазного разделения микропористых полиэфиризоциануратов, надмолекулярная структура которых формируется по типу ядро – оболочка.

Микропористые полиэфиризоцианураты получали путем взаимодействия 2,4-толуилендиизоцианата с макроинициатором анионной природы в среде толуола и реакционных условиях, способствующих преимущественному формированию полиизоциануратов. В качестве макроинициатора был использован блок-сополимер оксида пропилена с оксидом этилена с молекулярной массой 4200, часть гидроксильных групп которого замещена на калий-алкоголятные. Согласно измерениям температурных зависимостей тангенса угла диэлектрических и механических потерь, наблюдается значительное влияние использованных амфифильных макромолекулярных щеток на процессы микрофазного разделения в исследуемых полимерах.

Для изучаемых полимеров характерным является развитие упругой деформации, обусловленной высоким уровнем объединения полиизоциануратов в стеклообразную микрофазу. Использование амфифильных макромолекулярных щеток приводит к пятикратному возрастанию обратимой деформации, развиваемой при одноосном растяжении образцов. Показано, что изменение характера проявления высокоэластической деформации и морфологии поверхности модифицированных образцов микропористых полимеров обусловлено усилением степени микрофазного разделения жесткопепной и гибкопепной составляющих.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 18-43-160002).