

26 том. 2 секция ПОСТЕРНЫЕ ДОКЛАДЫ

ОКРАШЕННЫЕ ПОРОШКИ ФОСФАТОВ КАЛЬЦИЯ С РАЗЛИЧНЫМ МОЛЬНЫМ СООТНОШЕНИЕМ Са/Р ДЛЯ ПОЛУЧЕНИЯ БИОКЕРАМИКИ

<u>Фадеева И.В.,</u>^а Сафронова Т.В.,⁶ Фомин А.С.,^а Воблов И.И.,^а Филиппов Я.Ю.,⁶ Шаталова Т.Б.,⁶ Баринов С.М.^а

^aИнститут Институт металлургии имени А.А. Байкова Российской Академии Наук, 119334, г. Москва, Ленинский проспект, 49, e-mail: fadeeva inna@mail.ru

 6 Московский государственный университет имени М.В.Ломоносова, 119991, Москва, Ленинские горы, $\it I$

Порошки фосфатов кальция были синтезированы из лактата кальция $Ca(C_3H_5O_3)_2$ и двухзамещенного фосфата аммония $(NH_4)_3HPO_4$ при мольных соотношениях Ca/P 1; 1,5; 1,67 при добавлении воды в условиях механической активации.

По данным РФА после синтеза фазовый состав порошка с соотношением Ca/P=1,67 был представлен гидроксиапатитом кальция $Ca_{10}(PO_4)_6(OH)_2$. А в порошках, синтезированных при Ca/P=1,5 или Ca/P=1,6 был обнаружены брушит $CaHPO_{4,2}H_2O$ и монетит CaHPO4. Для придания порошкам окраски их термообработку проводили при различных температурах в интервале $500-700^{\circ}C$ в течение 1 часа. При разложении лактата аммония $C_3H_5O_3NH_4$, сопутствующего продукта реакции, в процессе термообработки при недостатке кислорода образуется аморфный углерод, придающий порошкам окраску от светло-серого до черного.

По данным РФА после термообработки при 700° С в порошках, синтезированных при Ca/P=1,5 или Ca/P=1, обнаружен γ-пирофосфат кальция γ- $Ca_{\gamma}P_{\gamma}O_{\gamma}$.

После обжига при 1100° С согласно данным PФA, фазовый состав керамики на основе синтезированных и предварительно термообработанных порошков фосфата кальция определяется заданным мольным соотношением Ca/P. Фазовый состав образцов на основе порошков, синтезированных при Ca/P=1,67, был представлен гидроксиапатитом кальция Ca₁₀(PO₄)₆(OH)₂, синтезированных при Ca/P=1,5 был представлен витлокитом β -Ca₃(PO₄)₂, а синтезированных при Ca/P=1 был представлен β -пирофосфатом кальция β -Ca₂P₂O₇.

Полученные кальцийфосфатные керамические материалы на основе синтетических порошков могут быть использованы для изготовления костных имплантатов.

Работа выполнена при поддержке фонда РФФИ, грант № 18-29-11079.