INFLUENCE OF PH AND CONCENTRATION ON DOUBLE STIMULI-RESPONSIVE HOMOPOLYMERS N-[3-(DIETHYLAMINO)ETHYL)-METHACRYLAMID IN BUFFER SOLUTIONS BEHAVIOUR

<u>Simonova M.A.</u>,^a Khayrullin A.R.,^a Turina V.O.,^b Filippov A. P.,^a Kamorin D.M.,^{c,d} Kamorina S. I.,^c Sadikov A.Yu. ^{c,d}

^aInstitution of Russian Academy of Sciences the Institute of Macromolecular Compounds, RAS, Bolshoi pr. 31, Saint-Petersburg, 199004, Russia, e-mail: mariasimonova1983@mail.ru

^bHigher School of Technology and Energy, Ivana Chernych st. 4 Saint-Petersburg, 198095, Russia ^cNizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minina street, Nizhny Novgorod, 603951, Russia ^dLobachevsky State University of Nizhny Novgorod, 23 Gagarin av. 23, 603022, Russia

The aim of this work is to study pH dependences of solution characteristics of double stimuli-responsive N-[3-(Diethylamino) ethyl]methacrylamid in buffer solutions. M_w was 12000 g/mol and was measured by method of static light scattering in chloroform and deionized water.

H ₃ C O	pН	T₁,°C	T₂,°C	ΔT,°C	T₁*,°C	T₂*,°C	ΔT*,°C
н ₂ с NH	7.0	>62.0	-	-	>62	-	-
H ₂ C CH ₂	9.2	50.0	53.0	3.0	50.0	53.0	3.0
H ₂ C CH ₂	10.0	43.0	44.0	1.0	43.0	45.0	2.0
	12.4	38.0	39.0	1.0	38.0	39.0	1.0

Table 1. Structure of monomer and phase separation temperatures.

The table shows, that increase of pH leads to decrease of phase separation temperatures (T_1 and T_2) and interval ΔT . For pH close to 7 is not able to measure end of phase process, because temperatures are too high.

The financial support was provided by The Russian Foundation for Basic Research (project № 18-33-00576 mol a).